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NONLINEAR BENDING OF THIN ELASTIC RODS

UDC 539.3Yu. V. Zakharov1 and K. G. Okhotkin2

Exact solutions of the problem of nonlinear bending of thin rods under various fixing conditions and
point dead loads are obtained. The solutions written in a unified parametric form and expressed in
terms of the elliptic Jacobi functions are classified. These solutions depend on a single parameter —
modulus of elliptic functions.

Introduction. An exact solution of the equation of nonlinear bending of a rod, written in the form
of an equation of a nonlinear pendulum, was obtained first by Heinzerling [1] (see also [2]). Popov [3, 4] gave
elliptic-integral solutions governing equilibrium of a rod, which depend on three parameters related implicitly to the
boundary conditions and acting force, and studied possible configurations of the bent rod such as segments of the
Euler elastica. Zakharov and Zakharenko [5] gave an exact solution for a rod under transverse loads, expressed in
terms of the elliptic Jacobi functions, which depends on a single external parameter — modulus of elliptic functions
related to the external force. Given this solution, one can determine shapes of the bent rod for an arbitrary number
of inflection points. Levyakov [6] obtained exact solutions that describe equilibrium of a rod loaded by an axial
force in terms of elliptic functions and studied the secondary loss of stability of the rod, which can occur under
certain conditions.

In the present paper, we give an exact analytic solution of the problem of nonlinear bending of a rod loaded
by a force whose direction remains unchanged during deformation of the rod. The critical loads and equilibrium
curvilinear configurations of the loaded rod are calculated.

1. General Solution of the Problem of Rod Bending. We consider a thin inextensible rod of length L
and flexural rigidity EI. The Cartesian coordinate system XOY is chosen in such a manner that the OX axis is
directed along the undeformed straight rod, and the coordinate origin is located at its left end. The left end of the
rod is fixed, and the right end is fixed or free. The rod is compressed by a dead force P . We denote the arclength
reckoned along the rod by l, the angle between a tangent at the current point to the rod axis and the OX axis
by θ(l), and the Cartesian components of the force P by Px and Py.

We write the equation of equilibrium of the rod [4]

EI
d2θ

dl2
− Px sin θ + Py cos θ = 0 (1)

and reduce it to the equation of a nonlinear pendulum. We introduce the following notation: P is the magnitude
of the dead load and ϕ0 is the angle between the direction of the force P and the OX axis. To study all possible
configurations of the rod, it suffices to consider the angle ϕ0 varied from 0 to π/2. The angles ϕ0 > π/2 correspond
to rod extension and, hence, are not considered in the paper. The quantities P and ϕ0 are assumed to be specified
parameters of state. It is obvious that

Px = −P cosϕ0, Py = P sinϕ0. (2)

Substituting (2) into Eq. (1), we obtain

d2θ

dl2
+

P

EI
sin (θ + ϕ0) = 0.
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We introduce the dimensionless length t = l/L, which varies from 0 to 1, and change the variable γ = θ+ϕ0. As a
result, the last equation becomes

d2γ

dt2
+ q2 sin γ = 0, (3)

where q2 = PL2/(EI). The solution of Eq. (3) has the form

γ(t) = 2 arcsin [k sn (qt+ F1, k)],
dγ(t)
dt

= 2kq cn (qt+ F1, k), (4)

where sn and cn are the elliptic Jacobi sine and cosine, respectively. The modulus of elliptic functions k and the
parameter F1 play the role of integration constants and they are related to the force P and angle ϕ0 by boundary
conditions for each case of rod bending.

We denote the argument of elliptic functions by

u = qt+ F1. (5)

Using (4), we obtain

cos γ(t) = 1− 2k2 sn2 u, sin γ(t) = 2k snu dnu, (6)

where dn is the elliptic Jacobi delta function. Integration of the relations dx/dl = cos θ and dy/dl = sin θ yields the
following expressions for the coordinates of an arbitrary point of the rod:

x

L
=

t∫
0

cos θ dt =

t∫
0

cos (γ − ϕ0) dt = cosϕ0

t∫
0

cos γ dt+ sinϕ0

t∫
0

sin γ dt = X0 cosϕ0 + Y0 sinϕ0,

(7)
y

L
=

t∫
0

sin θ dt =

t∫
0

sin (γ − ϕ0) dt = cosϕ0

t∫
0

sin γ dt− sinϕ0

t∫
0

cos γ dt = Y0 cosϕ0 −X0 sinϕ0.

Here

X0 =

t∫
0

cos γ dt =

t∫
0

(1− 2k2 sn2 u) dt = −t+
2
q

[E(amu)− E(amF1)], (8)

Y0 =

t∫
0

sin γ dt =

t∫
0

2k snu dnu dt =
2k
q

(cnF1 − cnu),

E (amu) is the incomplete elliptic integral of the second kind of the elliptic Jacobi amplitude. Expressions (7)
and (8) determine configurations of the bent rod in the parametric form, and the role of the parameter is played
by the reduced length of the rod t.

2. Bending of a Cantilevered Rod under a Dead Load. The boundary conditions have the form

θ(0) = 0,
dθ(L)
dl

= 0.

For Eq. (3), these conditions are written as

γ(0) = ϕ0,
dγ(1)
dt

= 0. (9)

With allowance for the first condition in (9), from (4) we obtain snF1 = sin (ϕ0/2)/k and, hence,

F1 = F [arcsin (sin (ϕ0/2)/k), k], (10)

where F is the elliptic integral of the first kind and the modulus k varies within the limits sin (ϕ0/2) < k < 1.
The second condition in (9) implies cn (q + F1) = 0, which yields

q = (2n− 1)K(k)− F1 (n = 1, 2, 3, . . .). (11)

Here K(k) and F (ϕ, k) are the complete and incomplete elliptic integrals of the first kind, respectively. Expres-
sions (10) and (11) determine the spectrum of eigenvalues qn(k), which, in turn, determines the critical loads

P/Pcr = (2/π)2{(2n− 1)K(k)− F [arcsin (sin (ϕ0/2)/k), k]}2. (12)
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Fig. 1. Eigenvalue spectrum of the equation of a thin rod.

Here Pcr = (π/2)2EI/L2 is the Euler critical load and n enumerates the modes of the solution. Figure 1 shows the
load P/Pcr versus the variables k and ϕ0 in accordance with expression (12).

Configurations of the rod are determined by substituting q and F1 from (10) and (11) into (7) and (8).
Specifying the value of the external load P and mode number n, one obtains a certain configuration of the rod
determined by a single parameter — modulus k related to the force P by relation (12). The minimum value of
k = sin (ϕ0/2) corresponds to the minimum critical force. As P →∞, k → 1.

Setting n = 1, we obtain the Euler critical force. Lavrent’ev and Ishlinskii [7] called the critical loads
corresponding to n > 1 the dynamic thresholds of buckling. These loads can be reached in the case of shock loading
where the rise time of the pulse is shorter than the relaxation time of the system.

Usually, the critical loads are determined by solving a linear equation of equilibrium (see [8]). For an elastic
cantilevered rod loaded by an axial (ϕ0 = 0) force P , the critical loads Pn = (2n − 1)2(π/2)2αr/L

2 (n = 1, 2, . . .)
are the eigenvalues of the boundary-value problem

y′′ + (P/αr)y = 0, y(0) = 0, y′(L) = 0,

where αr = EI is the flexural rigidity and y(x) is the deflection of the rod.
3. Bending of a Cantilevered Rod under a Transverse Load. For a transverse load, we have

ϕ0 = π/2. In this case, the eigenvalue spectrum (12) has the form

P/Pcr = (2/π)2{(2n− 1)K(k)− F [arcsin (
√

2/(2k)), k]}2 (n = 1, 2, 3, . . .). (13)

According to [5], we consider the case n = 1. If P = 0, then k2 = 1/2. As P → ∞, k2 → 1. If the force
acts in the opposite direction (P → −∞), one should replace k by k′ in all the expressions, where the additional
modulus k′ is determined from the relation k2 + k′2 = 1. For P = 0, we have k′2 = 1/2 and as P → −∞, k′2 → 1.
This implies that the rod is deflected from the equilibrium position under any nonzero force P . In this case, if the
load increases monotonically, no critical values exist.

If n > 1, it follows from (13) that critical loads exist for k2 = 1/2:

Pn = (n− 1)2[(4/π)K(
√

2/2)]2Pcr ≈ 5.6(n− 1)2Pcr (n = 1, 2, . . .).

For n = 1, no critical loads exist and for n > 1, the critical loads are dynamic.
For γ = θ + π/2, the solution of Eq. (3) becomes

γ(t) = 2 arcsin (k sn ((pK(k)− F1)t+ F1, k)),

cos γ(t) = 1− 2k2 sn2 u, sin γ(t) = 2k snu dnu,

where p = 2n− 1 = 1, 3, 5, . . . , u = (pK − F1)t+ F1 is the argument, and F1 ≡ F [arcsin (
√

2/(2k)), k].
Equations (7) and (8) determining the coordinates x and y of an arbitrary point of the rod have the form

x

L
=

2k
pK − F1

[(
1− 1

(2k)2

)1/2

− cnu
]
,

y

L
= t− 2

pK − F1
[E(amu, k)− E1]. (14)

Here E(ϕ, k) is the incomplete elliptic integral of the second kind and E [arcsin (
√

2/(2k)), k] ≡ E1. Equation (14)
was obtained using the relation cn (F1, k) = cos (arcsin (

√
2/(2k))) = (1− 1/(2k)2)1/2.
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Fig. 2. Equilibrium configurations of the cantilevered rod under a transverse load: curves
1–4 refer to the static mode (n = 1) and curves 5–8 refer to the first dynamic mode (n = 2)
for k2 = 0.5 (1 and 5), 0.6 (2 and 6), 0.85 (3 and 7), and 1− 10−5 (4 and 8).

Equations (14) determine the shape of a cantilever bent strongly by static (n = 1) and dynamic (n = 2, 3, . . .)
loads in the parametric form (0 6 t 6 1). The modulus k related to the force P varies within the interval 1/2 6 k2

6 1 and characterizes the curvature of the cantilever. For each critical load, the dependence k2(P/Pcr) is determined
by Eq. (13) for a corresponding value of p = 2n− 1.

Figure 2 shows the configurations of the bent rod for static (p = 1) and dynamic (p = 3) modes for different
values of the load applied (see [5]).

For dynamic modes, the result obtained is paradoxical: under the action of a pulsed load whose rise time is
shorter than the relaxation time of the system, the rod is deflected toward the acting force. Physical nature of this
metastable state is not understood. Zakharov and Zakharenko [5] considered some cases where similar effects are
manifested. It is noteworthy that Shkutin [9] also obtained similar results by numerical methods.

4. Bending of a Cantilevered Rod under Axial Compression. In the case of an axial load, we have
ϕ0 = 0. The eigenvalue spectrum (12) takes the form

P/Pcr = (2/π)2[(2n− 1)K(k)]2 (n = 1, 2, 3, . . .). (15)

The equation describing rod bending is obtained by setting γ = θ in (3). The solution of this equation has the
form

θ(t) = 2 arcsin [k sn (pK(k)t, k)], cos θ(t) = 1− 2k2 sn2 u, sin θ(t) = 2k snu dnu,

where u = pKt and p = 2n− 1 = 1, 3, 5, . . . .
Expressions (7) and (8) for the x and y coordinates of an arbitrary point of the rod become

x/L = −t+ 2E (amu)/(pK), y/L = 2k (1− cnu)/(pK).

These formulas are obtained with allowance for F1 = 0 for the axial force. Figure 3 shows the configurations of the
rod for static (p = 1) and dynamic (p = 3) modes for different values of the load applied.

5. Bending of a Rod with Clamped Ends under Axial Compression. In the case of axial compression
(Px = −P and Py = 0), one should set γ = θ in Eq. (3) and solution (4)–(6). The bent axis of the rod is determined
by expressions (7) and (8) for ϕ0 = 0. The boundary conditions have the form

θ(0) = 0, θ(1) = 0. (16)

Moreover, we consider the additional relation

y(L)
L

=

1∫
0

sin θ dt =
2k
q

[cnF1 − cn (q + F1)] = 0, (17)

which is the condition of zero ordinates of the clamped ends of the rod.
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Fig. 3. Equilibrium configurations of a cantilevered rod under axial compression: curves 1–4 refer to the
static mode (n = 1) and curves 5–8 refer to the first dynamic mode (n = 2) for k2 = 0.2 (1 and 5),
0.5 (2 and 6), 0.85 (3 and 7), and 1− 10−5 (4 and 8).

Fig. 4. Equilibrium configurations of a cantilevered rod under axial compression: curves 1–4 refer to the
static mode (n = 1) and curves 5–8 refer to the first dynamic mode (n = 2) for k2 = 0.1 (1 and 5),
0.4 (2 and 6), 0.85 (3 and 7), and 1− 10−5 (4 and 8).

Taking into account (16) and the properties of zeros of elliptic sine,

sn (0 + F1, k) = 0, F1 = 2n1K(k), sn (q + F1, k) = 0, q + F1 = 2n2K(k),

from (4) we obtain q = 2n2K(k)−F1 = 2(n2−n1)K(k) or q = 2mK(k), F1 = 2K(k). Here (n1, n2,m) = 1, 2, 3, . . . .
By virtue of (17), the eigenvalues are given more rigorously by q = 4nK(k). The eigenvalue spectrum (critical
loads) have the form

P/Pcr = (2/π)2[4nK(k)]2 (n = 1, 2, 3, . . .).

Expressions (7) and (8) determining configurations of the rod become

x/L = −t+ 2E (amu)/(4nK), y/L = 2k(1− cnu)/(4nK), u = 4nK(k)t.

These formulas are obtained with allowance for periodicity of elliptic functions. Figure 4 shows the configurations
of the rod for the first two modes.

6. Bending of a Rod with Hinged Ends under Axial Compression. For axial compression (Px = −P
and Py = 0), we set γ = θ in Eq. (3) and solution (4)–(6). The configurations of the bent rod is determined by (7)
and (8) for ϕ0 = 0. The boundary conditions for hinged ends have the form

dθ(0)
dl

= 0,
dθ(1)
dl

= 0. (18)

Moreover, we use condition (17), which requires that the ordinates of the rod ends are equal to zero.
Taking into account (18) and the properties of zeros of elliptic cosine

cn (0 + F1, k) = 0, F1 = (2n1 + 1)K(k), cn (q + F1, k) = 0, q + F1 = (2n2 + 1)K(k),

from (4) we obtain q = (2n2 + 1)K(k) − F1 = 2(n2 − n1)K(k) or q = 2nK(k) and F1 = K(k). Here (n1, n2, n)
= 1, 2, 3, . . . . The additional condition (17) is satisfied identically. The eigenvalue spectrum (critical loads) is given
by

P/Pcr = (2/π)2[2nK(k)]2 (n = 1, 2, 3, . . .).

Expressions (7) and (8) for the rod coordinates have the form

x/L = −t+ 2[E (amu)− E (k)]/(2nK), y/L = −2k cnu/(2nK), u = 2nK(k)t+K(k).

These formulas are written with allowance for periodicity of elliptic functions and the relation E (am ((2n
− 1)K, k), k) = E((2n − 1)π/2, k) = 2nE(k) + E(π/2, k) = (2n − 1)E. Figure 5 shows the configurations of
the rod for first two modes.
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Fig. 5. Equilibrium configurations of a rod with hinged ends
under axial compression: curves 1–4 refer to the static mode
(n = 1) and curves 5–8 refer to the first dynamic mode (n = 2)
for k2 = 0.1 (1 and 5), 0.5 (2 and 6), 0.83 (3 and 7), and
1− 10−5 (4 and 8).

Conclusions. The results obtained above can be used to verify numerical methods of solving nonlinear
equations of bending of rods [9].

Zakharov [10] considered the magnetic reversal of a magnetic system in a layer across anisotropy and showed
that, after the dynamic threshold, magnetization in the layer turns from the equilibrium position and becomes
opposite to the field over the entire thickness of the layer in a similar manner as a rod loaded by a transverse force is
bent oppositely to the force direction after the first dynamic threshold is reached. These effects can be observed in
tests on rods under shock loading. The problem of magnetization reversal along and across the direction of magnetic
anisotropy of a magnetic layer with nonsymmetric boundary conditions is similar to the Euler problem of stability
of an elastic rod. It should be noted that magnetic systems are more convenient to study the dynamic buckling
since many experiments on these systems can easily be performed. For a magnetic system, modes of magnetization
reversal are similar to axial and transverse loads applied to the free end of an elastic rod whose other end is clamped,
which stimulated the analysis of nonlinear solutions for bending of a thin rod.
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their attention to the work.
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